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Statistical analysis of failure of SiC fibres in the
presence of bimodal flaw populations
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Statistical parameters pertinent to silicon carbide fibres were estimated from experimental
distributions of failure data (including strengths and strains) using the linear regression and
maximum likelihood estimators. Strengths were evaluated using the average diameters of
fibres, diameters at failure locations measured by SEM, and taking into account the diameter
variations along the fibre axis, as evidenced by laser diffractometry. It was shown that

gauge-length insensitive statistical parameters were estimated when considering that fibre
fracture was dictated by two populations of partially concurrent flaw populations, including

intrinsic and extrinsic flaws.

1. Introduction

The mechanical behaviour of composite materials is
strongly influenced by the failure of the reinforcing
fibres. Ceramic fibres exhibit a significant scatter in
failure properties as a result of the presence of ran-
domly distributed fracture inducing microstructural
flaws. The criticality of these flaws is determined by
several factors, including their nature, geometry, di-
mensions and location, and orientation with respect to
the stress field. The well-known Weibull’s model [1] is
the most widely used for the description of the statis-
tical distribution of failure strengths of fibres under
uniaxial stress states.

Most authors assume the presence of a single popu-
lation of volume-located fracture-inducing flaws
[2-5]. Failure probability under uniform uniaxial ten-
sile stresses is given by the following equation

1—exp|:—V<G>mv} (1)
Oov

where m, is the shape parameter (often referred to as
Weibull modulus), o, is a scale factor, V' is the vol-
ume under stresses and o is the applied stress field. m,
reflects the scatter in strength data and o, is some-
what related to the average fracture strength.

The two adjustable statistical parameters of the
Weibull distribution (m, and c,,) are derived from
fracture data using an estimator. An estimator is
a method or algorithm to fit the distribution to the
experimental data. Methods used for such estimators
include linear regression, maximum likelihood, mo-
ments methods, etc.

The distribution’s parameters are useful for predic-
ting fibre failure under various loading geometries, as
involved in different stress states, in fibre bundles, or in
fibre-reinforced composites. Therefore, determination
of the true statistical parameters is required for failure
prediction purposes.

P =
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Various estimates of the Weibull modulus for
Nicalon SiC fibres have been published in the litera-
ture (see, for instance [6] and references therein). The
data indicate a wide variability in the reported
Weibull moduli: m &~ 2.3-5.3. The scale factor is gen-
erally not estimated.

Estimation of statistical parameters is not easy in
most cases, and particularly so for the SiC fibres.
Thus, inspection of the Weibull plots of strength data
measured on fibres having various gauge lengths often
reveals the presence of several families of data [7-11].
Authors have identified bimodal populations of frac-
ture inducing flaws located in the surface and in
the volume of fibres and acting concurrently [7-11].
Failure probability is derived from the product of
survival probabilities from each population. A few
authors have introduced an arbitrary coefficient in the
Weibull equation (0 < o < 1) in order to correct the
dependence of statistical parameters on the gauge
lengths and the resulting failure predictions [12, 13].

Additional factors may affect the statistical para-
meters estimates. Thus, certain fibres, such as the SiC
fibres (Nicalon), possess a non-constant diameter or
a non-circular cross-section. Therefore, a satisfactory
measure of the cross-sectional area is not available for
derivation of the fracture strengths from the applied
forces. Furthermore, the stress state acting on the fibre
is not uniform, although uniaxial stresses were applied
uniformly at fibre ends. Finally, the method of fitting
Equation 1 to experimental strength data has also
been shown to affect the statistical parameters esti-
mates [14—17].

The main objective of the present work was to
investigate the influence of such factors upon the sta-
tistical parameters estimates, in order to determine the
most appropriate ones for failure predictions of fibre
bundles and of ceramic matrix composites. The analy-
sis focused on Nicalon fibres which are introduced in
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various composites. The goodness-of-fit of the Weibull
distribution to the experimental failure data was as-
sessed using the Andersson—Darling test [18], which
is considered as the most powerful of the empirical
distribution function tests [19]. This test is based
upon determination of the area of discrepancy be-
tween the plot of experimental data and the calculated
distribution of failure data; it gives more importance
to the tails of the distribution and is the most appro-
priate for small samples.

The statistical parameters were estimated using the
methods of linear regression and maximum likeli-
hood. The following cases were examined: (i) failure
was characterized either by a stress or by a strain;
(ii) failure strengths were calculated from various esti-
mates of the fibre diameter — the average value, the
diameter at the location of failure, or diameters vary-
ing along the fibre, (iii) various populations of frac-
ture-inducing flaws were considered — a single popula-
tion, then two concurrent populations of surface- and
volume-located flaws, and finally partially concurrent
populations of intrinsic and extrinsic flaws.

2. Determination of statistical
distributions of failure data

2.1. Tensile tests

Three batches of about 30 test specimens were pre-

pared from a single spool of 500 filament tow of silicon

carbide (Nicalon NL 202). Suitable lengths of bundles

were cut to obtain test specimens having, respectively,

a 25, 50 and 75 mm gauge length. The sizing was

removed using a solvent.

The single filaments were tested under tension for
measurement of fibre elongation and of the associated
force at failure. The conventional “window card” tech-
nique was used. Tensile tests were carried out on
a specific tensile machine for fibre testing. A constant
cross head speed was applied such that the deforma-
tion rate was 1% min~!. Strains were derived from
crosshead displacement measured using a LVDT ex-
tensometer mounted on the grips. A layer of grease
was deposited on the fibres to obtain the fibre frag-
ments after testing for fractographic examination of
fractured surfaces using the scanning electron micro-
scope (SEM). 75% of the fibre test specimens were
examined by SEM.

2.2. Fibre diameter measurement
Fibre diameters were measured by laser diffrac-
tometry prior to tensile testing. Interaction of a laser
beam with the fibre under the so-called Fraunhoffer
diffraction conditions, provides a diffraction pattern
[20]. Filament diameter is derived from fringe spacing
measurement. Diameter was measured every 5 mm
along the fibre axis. The average of all the diameters
obtained by laser diffractometry was 14.5 um (stan-
dard deviation 2 pum).

Fibre diameter at the failure location (referred to as
dsenm) Was measured by SEM.

Fig. 1 examplifies the diameter variations detected
on single fibres. Fig. 2 indicates a rather large scatter
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Figure 1 Examples of diameter variations detected by laser diffrac-
tometry in two Nicalon fibres with a 75 mm gauge length.
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Figure 2 Histogram of the diameters measured on Nicalon fibres.

in the mean diameters measured on each fibre by laser
diffractometry (referred to as d,,), and in dggy. As
shown in Table I, diameters at failure locations were
significantly smaller than the mean values, d,,, meas-
ured by laser diffractometry.

2.3. Determination of statistical
distributions of failure data
Failure stresses were derived from the forces measured
at fracture and from fibre cross-sectional areas
estimated:
(i) from the average diameters measured on each
fibre using laser diffractometry
‘ 4F!
Ol = = @)
A‘ ﬁ(dAv)z
where Fi is the force at failure for the ith fibre;

(i1) from the diameters at failure locations measured
using SEM

4F}

n(d éEM)Z

3)

i
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TABLE I Mean diameters measured by laser diffractometry, (day,
and by scanning electron microscopy, dsgy. Standard deviations are
given in parentheses

Gauge length day (um) dsgw (Wm)

(mm)

25 14.7 13.76
(1.9) (2.25)

50 14.8 13.05
(1.2) (1.48)

75 14.3 12.81
2.3) (1.71)

(i) considering the diameter changes as evidenced
by laser diffractometry. The fibre was assimilated to
a chain of truncated cones with a radius varying
linearly between R; and R;,, and with a height of
Smm according to the steps selected for diameter
measurement (Fig. 3). The failure stress refers to the
maximum stress acting on the fibre, which corres-
ponds to the smallest diameter measured along this
fibre (dyn)

; 4F,
e T R @
Strains to failure were derived from elongations at
fracture.

The associated probabilities of failure, P;, were de-
duced using ranking statistics. Ordering the failure
data from smallest to largest and assigning a ranking
number i, the probabilities of failure were then as-
signed by the following relationship

i— 0,5

Pi = N (5)

where N is the total number of specimens.

Several other relationships are available to assign
probabilities, but the one defined in Equation 5 is
preferred because it yields small statistical bias errors
in the resulting statistical parameters [ 14].

2.4. Estimation of statistical parameters
The conventional Weibull linear regression estimator
involves regression of a transformed probability term,
Inln(1/1 — P;), on a transformed fracture strength
term, Ino;.

The slope of the linear regression line provides an
estimate of the Weibull modulus, whereas the inter-
cept is used to estimate the second parameter, Gy,
according to the following transformed failure prob-
ability equation derived from Equation 1

In[ — In(1 — P)] =InV 4+ mnoc; — m,Inc,, (6)

The maximum likelihood approach for estimating
the adjustable statistical parameters is well-developed
and well-respected by the statistical community [14].
It has been proven in the statistical literature that the
parameters resulting in the maximum value of the
likelihood are very good estimates of the true para-
meters [14]. The mathematics used in derivation of
a maximum likelihood estimator and the iterative

5mm

Figure 3 Schematic diagram showing the description of fibre dia-
meter variations by truncated cones.

process used in executing the estimator are merely the
means of finding parameters to maximize the likeli-
hood, or usually in practical evaluation, the log-likeli-
hood. The maximum likelihood estimate of the
Weibull modulus, m, is evaluated by iteratively deter-
mining the value of m that satisfies Equation 7. After
m is known, the second Weibull parameter, o, is
determined from Equation 8

% ci"In(c;)
Inc;) — N2 —— =0 (7))

N
1 Z G;nv
i=1

V N 1/my
G0 = [ﬁ ) c:"} ®

i=1

+

Fl=
M=

A possible bias in the estimator [21, 227 was taken
into account. The estimates of statistical parameters
were corrected using the following method [21]

m = rh/%
m

)
Sw = mC,,,

where 11 is the estimated value of m, m is the corrected
value, S, is the associated standard deviation. 1, /m
and C,,, are, respectively, the estimated means and the
standard deviation of the distribution of the estimator
of m. They were computed as a function of the sample
size, using a Monte Carlo simulation [21]. This
method was also applied to obtain bias and standard
errors for the values of o.

The fit of the Weibull distribution was assessed
using the Andersson—Darling test. The Andersson—
Darling statistics called 42, is defined in the following
equation:

1 N
A} = — N — N Y (2i — 1)In(P)

+@n+ 1 —2i)ln(l — P) (10)

A modified formula has been proposed by D’Agostino
and Stephens [23] for a Weibull distribution and
a finite population of N data

A* = A}(1 + 0.2/N'?) (11)

As an approximate rule, only values of 4* < 0.5 are
likely to have meaningful significance.
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3. Failure probability equations

The failure probability equations were established for
the different flaw populations and for the stress states
that were examined in the present paper. The failure
probability strength relations in the presence of vary-
ing fibre diameters were obtained by incorporating
the stress-state description in the following Weibull

equation
1 — exp[ _ J <3> dA] (12)
4\ 00

where A refers to the surface or the volume of the fibre.
The stress state was derived from the linear variations
of the diameter, between the 5 mm apart 2R; and
2R; . values (Fig. 3):

P =

(13a)
with

RE) = TRy = R)+ R (13b)

where [ is the distance between R; and R;,,
(I = 5 mm).

A convenient form of probability—strength relations
uses the equivalent volume, V (or an equivalent sur-
face in the presence of surface-located failure origins)

1 — exp [ — VE<C;‘“”>m1 (14a)
Ov
Vp = SJL<G(Z)>dz
0 Gmax

S is the cross-sectional area of the fibre, L is the length
and o,,,, is the maximum stress in the fibre. For the
uniform stress-state 6(z)/Cm. = 1 and Vg = V.

The failure probability—strain to failure, P — ¢, rela-
tions were given by the following equation for volume-
located failure origins (a similar equation is easily
obtained for surface-located failure origins)

1 — exp [ _vy <i>m] (15)
8Ov

The resulting equations of failure probability were
then combined to account for the contribution of
concurrent or partially concurrent populations of
fracture-inducing flaws. For conciseness, equations
will be presented only for failure probability—strength
relations.

P =

where

(14b)

P =

3.1. Failure probability—strength equations
in the presence of single flaw
population

If the fracture-inducing flaws are assumed to be

located in the interior of the fibres, the failure prob-

ability—strength relation is given by Equation 14. In
the presence of a constant fibre radius, V; = V. In the
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presence of a variable fibre radius, 6,,,x = 0,4 and

Voo "il Ra ml
" =13 = 2m)(Ri+1 — R))
x [RiP™ — R{™*™] (16)

R,,;, 1s the minimum radius observed in the fibre.

3.2. Failure probability—strength relations in
the presence of bimodal concurrent
flaw populations

Concurrent flaw populations pre-exist simultaneously

within all the specimens. In the presence of concurrent

surface- and volume-located flaw populations, failure
probability is obtained from the product of survival

failure probabilities
P =1—-(1-P)1—-Pr) (17)

where P, and P, are, respectively, the probabilities of
failure from surface- and volume-located flaws. The
overall failure probability reduces to

1 _ eXp |: _ VE<Gmax> v _ SE <Gmax> S:|
Gov Gos

(18)

P =

where 6o, and mg are the statistical parameters for
surface-located failure origins. Sg is the effective sur-
face. Sg coincides with the fibre external surface in the
presence of a uniform stress state

Sg = 2nRL (19)

In the presence of stress gradients, Sg is given by the
following equation

< ”il R2m 2l
¢ i1 2 = 2m)(Riy1 — R))
x [REP™ — RP™™] (20)

VE is given by Equation 16 and 6, = 04,

Transition of failure origin from surface to volume
is characterized by a transition stress, o* and
a transition strain, €*, such that P, = P,

1/(my—my)

N
SE OVm 1/(my—mg)

ot — [VE((;))'"} (22)

3.3. Failure probability—strength relations
in the presence of bimodal partially
concurrent flaw populations

Bimodal partially concurrent [24] populations in-
clude one family of flaws pre-existing within all the
samples (intrinsic flaws), whereas flaws of the second
family are present only within certain specimens (ex-
trinsic flaws). Failure probability can be obtained
from the following equation

P = (1 —mn)P; +my[1 — (1 — Py)(1 — P,)]
(23)



where m, is the fraction of specimens containing
the extrinsic flaws. P; refers to intrinsic flaws and P, to
the extrinsic flaws. The overall failure probability

reduces to
1 — (1 — ‘Itz)CXp|: — UE1<Gmax> :|
Go1

Omax | Omax |~
— TLCXpP| — Vg — Vg2
Go1 Go2

(24)

P =

where Vg and Vg, are the effective volumes respective
to intrinsic and extrinsic flaws.

In the presence of a uniform stress state,
Vi1 = Vi, = V. In the presence of stress gradients,
Vi1 and Vg, are given by Equation 16 for the res-
pective Weibull moduli, m; and m,.

4. Results and discussion
4.1. Failure data
Comparable statistical distributions of failure data
were obtained whatever the fibre diameter estimate
employed for strength determination (dav, dsgm, dmin)
or whatever the failure data selected (stress or strain)
(Fig. 4). Inspection of these loglog plots revealed the
presence of two distinct families of data at the 25 and
75 mm gauge lengths, whereas a single family was
observed for the 50 mm gauge length. Evidence of
these trends is also given by the statistical distribu-
tions of strains to failure (Fig. 4d) which indicates that
the family of failures at the low stresses must not be
attributed to an artefact in diameter or failure force
measurement.

Fig. 5 shows a statistical distribution of strength
data plotted independently of the scale effects induced
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Figure 5 Log plot of Nicalon fibre strengths versus

In[1/V(—1In(1 — P)] at various gauge lengths: (A) 25 mm,
(<) 50 mm, (M) 75 mm.

by gauge lengths. This plot confirms the presence of
two distinct families of failure data. Most data fall into
a single line, whereas a few data at the low strength
extreme suggest the presence of a second population
of fracture origins in the 25 and 75 mm gauge length
fibres.

SEM examination of fracture surfaces revealed the
presence of fracture-inducing flaws located in the sur-
face or in the interior of fibres (Fig. 6). Fracture origins
were shown by fracture mirrors. Surface-located frac-
ture origins dominated fracture at the low strengths or
strains, whereas volume-located fracture origins were
essentially identified in those fibres that failed at high-
er stresses or strains. Most failure data from surface-
and volume-located flaws fall into the main line of
Fig. 5. The flaws at the low-strength extremes did not
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Figure 4 Log log plot of Nicalon fibre data versus cumulative failure probability obtained at various gauge lengths for different estimates of
fibre failure: (a) o,,,, (b) G4, (¢) Ou,,, and (d) failure strain, eg: (A) 25 mm, (¢) 50 mm, (H) 75 mm.
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Figure 6 Scanning electron micrographs showing (a) volume- and
(b) surface-located fracture origins in Nicalon fibres.

TABLE II Mean strengths G,,,, 6,4, and 6, . and mean strains-
to-failure, €, for the Nicalon fibres. Standard deviations are given
in parentheses

Gauge length G,y Ggpy g G,

(mm) (%)

25 2203 2692 1 2678
(584) (663) (0.25) (754)

50 1914 2263 0.9 2108
(388) (634) (0.18) (454)

75 1773 2100 0.84 1947
(466) (624) (0.19) (500)

exhibit any specific geometrical feature which differen-
tiates them from the other surface-located flaws.

Table II shows that 6, and o, are significantly
larger than o,,, indicating that failure initiated prefer-
entially in the most narrow sections of fibres.
Strengths derived from average fibre diameters are,
therefore, underestimated.

Fig. 7 shows that the lowest strength data were
obtained with those fibres having the largest diam-
eters. Fig. 7 also clearly indicates that such low
strengths cannot be attributed solely to a scale effect
induced by the diameter. These results suggest that
fracture origins at the low-strength extreme do pertain
to a distinct flaw population.
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Figure 7 Influence of fibre diameter upon Nicalon fibre strength
(gauge length = 75 mm): (a) average diameter measured by laser
diffractometry; (b) diameter at fibre location. The solid line shows
the theoretical dependence of strength on diameter (slope = — 2/m),
(O) data at low-strength extreme.

Therefore, the fracture-inducing flaws may be
grouped into two families:

(i) a family of extrinsic flaws responsible for frac-
ture at the low-strength extremes in the fibres having
a 25 or 75 mm gauge length;

(1)) a population of intrinsic flaws present within all
the fibres and located in the surface and in the interior
of fibres.

To assess the validity of this classification, the
distributions of failure data were analysed assuming
the previously mentioned possible populations of frac-
ture origins.

4.2. Statistical parameters

4.2.1. Assuming a single flaw population

A significant dependence of statistical parameters esti-
mates on gauge length, the estimator and the failure
data considered, may be observed in Tables III and
IV. Andersson—Darling parameter, A*, is smaller than
0.5 only for the 50 mm gauge length. A* is also smaller
than 0.5 at the 25 mm gauge length for the maximum
likelihood estimates. These results indicate that
a Weibull distribution may not be accepted because it
was found inappropriate for the 75 mm gauge length
(4* > 0.6).

A smaller scatter was observed with the statistical
parameters estimated using the maximum likelihood
estimator. This result is in agreement with logical
expectation, because maximum likelihood estimates
are generally less influenced by data at the extremes of
distributions than are the parameters estimated using
linear regression. It is worth pointing out that the
narrowest scatter was observed with the distributions
of strains-to-failure.



TABLE III Statistical parameters estimated by linear regression method for the Nicalon fibres, assuming the presence of a single

population of fracture-inducing flaws

Gauge length m, Standard Goy Standard A*
(mm) deviation (MPam?3/™) deviation
€ov
(mS/mv)
25 Guyy 35 0.68 1.38 0.05 0.76
Cgen 3.85 0.74 4.07 0.04 0.70
Gy, 32 0.64 0.57 0.063 0.5
& 4.44 0.86 333x10°° 1.34x10°° 0.65
50 Gy 5.46 1 19.55 0.81 0.34
G 491 0.95 14.46 0.58 0.33
G, 5.46 1 12.78 0.81 0.2
€ 5.55 1 1.02x107# 4%x10°° 0.33
75 Gy 3.47 0.68 1.43 0.06 0.97
Cgeny 3.13 0.61 0.9 0.03 1.07
Gy, 3.55 0.69 1.075 0.07 1.18
€ 3.98 0.78 1.76 x 1073 74x1077 1.16

TABLE IV Statistical parameters estimated by maximum likelihood method for the Nicalon fibres, assuming the presence of a single

population of fracture-inducing flaws

Gauge length m, Standard Coy Standard A*
(mm) deviation (MPam?"™) deviation
Eoy
(m>™)
25 G,y 4.65 0.7 8.54 0.34 0.45
Cgen 4.96 0.76 14.8 0.62 0.58
G, 3.65 0.57 1.58 0.06 0.4
€ 5.19 0.79 7.61x10°° 313x10°° 0.31
50 Gy 5.97 0.87 28.61 11 0.29
Cgen 5.14 0.8 17.77 0.73 0.31
G, 5.46 0.8 15.87 0.61 0.19
€ 5.81 0.85 1.23x107# 47x1074 0.27
75 Gy 4.62 0.71 8.43 0.35 0.56
Gy 4.12 0.66 5.39 0.23 0.67
G, S.11 0.81 10.2 0.408 0.60
€ 5.16 0.80 1.02x 1074 54x10°° 0.68

Maximum likelihood estimates were larger than
those obtained by linear regression. Both sets of esti-
mates were close only for the 50 mm gauge length,
which is in agreement with logical expectation.

4.2.2. Assuming concurrent populations
The distributions of failure data were separated to
conform with the presence of concurrent populations
of surface- and volume-located flaws (Fig. 8). The
censored data method proposed by Johnson was em-
ployed [25]. This method determines a new rank, i’,
for the data of each population by calculating a new
increment, A, as soon as one or more censored data of
the other population are encountered in the sequence
of test data.

Tables V and VI show that the sensitivity of statis-
tical parameters estimates to the previously mentioned
factors is reduced, and that the Andersson—Darling
parameters, 4*, are now smaller than previously.
Most of the previous conclusions apply. Let us just
point out the most important. The Andersson—Dar-
ling test shows that only the data obtained for
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Figure 8 Log log plot of the separated distribution of failure strain

data obtained for concurrent (x) surface- and (@) volume-located
flaw populations.

a 50 mm gauge length may be described using
a Weibull distribution. However, it can be seen that
a Weibull distribution may be regarded as quite
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TABLE V Statistical parameters for Nicalon fibres estimated by the linear regression method, assuming the presence of concurrent
populations of surface- and volume-located populations of flaws. Standard deviations are given in parentheses

L =25mm L =50 mm L =75mm
my Cos m, Coy A*  my [ m, Oov A*  my Cos m, Cov A*
G4y, 296 28 6.85 65 0.57 448 127 8.63 123 0.36 298 32 6.14 40 0.72
0.69)*  (1.42) (2.66) (5.27) (D)* (6.46) (3) (10) (0.69)* (1.63) (2.5 (3.5
Cudgry 33 77 6.3 54 0.52 445 151 6.03 47 0.32 2.88 33 4.08 6.77 1
(0.23) (3.9 (2.45) (4.38) (1) (7.69) (2) (3.81) (0.67) (1.68) (1.7 (0.6)
ca,, 287 18.43 545 25.68 0.55 4.32 80 7.42 64.65 0.3 3.03 2035 6.47 39.03 0.92
(0.66) (1.5) (2.31) (2.03) (1) 4) 2.87) (5.5) 0.72)  (2.86) (2.48) (2.34)
€os €ov €os Eov €0s €ov
€ 3.84 38x107% 694 33x107* 046 48 2x107* 86 62x107% 038 326 2x107* 7.6 4%x107% 098
089) (2x107% (2.7) (26x107%) (1.12) (1x107%)(29) (5x107%) 0.76) (1x107%) (3) (3.6x107%)

TABLE VI Statistical parameters for Nicalon fibres estimated by the maximum likelihood method, assuming the presence of concurrent
populations of surface- and volume-located populations of flaws. Standard deviations are given in parentheses

L =25mm L =50 mm L =75mm
my Gos m, Goy A* mg Cos m, Goy A* my Gos m, oy A*
G4y 3.5 71.64  6.72 50.3 051 475 162 7.86 86 031 445 135 5.5 22.6 0.42
0.66)* (3.7 (2) (4.13) 0.9) (8.14) (22)  (6.3) (0.84) 6.79) (1.8) (1.99)
Cugy 43 128 8 143 046 43 152 5.1 19 031 42 157 5.47 27 0.68
0.81) (64 (25 (11.8) 0.81)  (7.64) (1.43) (1.4 (0.8) (7.8)  (1.78) (2.38)
Gy, 347 3477 485 48 0.6 4.67 88.49 7.09 48.75 024 534 118.2 6.25 29.58 0.56
(0.57)  (1.81) (1.46) (3.92) 0.79) 4) (2.14) (3.43) (1) (0.62) (1.89) (2.41)
€0s Eov €os €ov €0s €ov
& 468 62x107%7 28x107% 049 528 9.6x10°* 745 3.6x107* 029 5.13 9x107% 1735 3x107%  0.62
0.88) 3x107%) (2.1) (23x107%) (1) 4.8x107%) (2) (2.6x107%) 097) (452 (2.4) (2.64x107%)

satisfactory when considering the maximum likeli-
hood estimates derived from the ¢,  data. Again it is
worth pointing out that the narrowest scatter was
observed with the strain-to-failure data.

The larger statistical parameters were obtained for
the volume-located flaws. These parameters exhibit
a significant scatter, except when considering the
strain data. This scatter may be related to the sample
size, because only 20%-30% of the failures were in-
itiated by volume-located flaws.

Because the Andersson—Darling test is not usually
applied in the presence of bimodal populations of
data, in order to assess the above conclusions the
probability-strength relations were computed for the
statistical parameters estimated from the o, data
(Tables V and VI). Computations were then compared
to the corresponding experimental strength distribu-
tions (Fig. 9). The results confirm that an excellent fit is
obtained only with the strength data measured at
a 50 mm gauge length. For the other gauge lengths,
agreement between computed and experimental data
is poor at the low-strength extremes. These results
substantiate the use of low values of A* < 0.5 as
a criterion of goodness of fit in the presence of bimodal
populations.

The transition strengths, o*, and deformations, £*,
were determined from the intersection of the distribu-
tions of failure data pertinent to the surface- and
volume-located failure origins (Fig. 8). The results
agree satisfactorily well with o* and €* computed
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using Equations 21 and 22 (Table VII). o* and &* are
rather high when compared with the mean values of
strengths and strains-to-failure (Table II) which re-
flects the dominance of surface-located flaws in fibre
failure as evidenced by SEM fractography. Table VII
also shows that o* and &* decrease with increasing
gauge lengths, as a result of correlative increases in
volume contribution according to the relation
V/S = L.

4.2.3. Assuming partially concurrent
populations

The Andersson—Darling parameters are now smaller
than previously and they are below 0.5, indicating that
Weibull statistics describe satisfactorily the distribu-
tions of failure data (Tables VIII and IX). The statist-
ical parameters estimated by linear regression show
a limited sensitivity to gauge length. In particular it is
worth noting that the estimates of parameters perti-
nent to the intrinsic flaws are very close. The smallest
scatter in estimates was observed for the strains-to
failure. The scatter in the maximum likelihood esti-
mates was the larger. However, the Andersson—Dar-
ling test indicates a better goodness-of-fit of the
Weibull distribution to the experimental data with
these latter estimates. All these results strongly sub-
stantiate the validity of separating the data into
two partially concurrent populations of extrinsic and
intrinsic flaws.



TABLE VII Comparison of transition strengths, o*, and strains,
e*, computed using Equations 21 and 22 with experiemental data
for various gauge lengths

Experimental data Theoretical data

25 50 75 25 50 75

mm mm mm mm mm mm
G,y 2080 2565 2835 3100 2439 2612
Gug, 3640 3463 3314 3055 4100 3810
o, 4000 3133 2835 3760 3100 2917
& 6 14 11 17 14 11

The Andersson—Darling test also indicates a com-
parable goodness-of-fit when the statistical para-
meters are estimated from either the 6, orthe o, or
the o, data. Diameter variations along the fibre axis
do not significantly influence the results. Similar esti-
mates of Weibull parameters were obtained indicating
that the distribution of o, data is appropriate for
statistical parameters determination.

Using strains as failure data appears to be the most
satisfactory solution. The Andersson—Darling para-
meter was the smallest in most cases and a limited
scatter in statistical parameter estimates was observed,
showing a slight sensitivity to gauge length. Using
strain data is very convenient because there is no need
to measure fibre diameters.

4.3. Predictions at various gauge lengths
In order to assess the validity of the above analysis,
probability—failure strain or stress relations at various
gauge lengths were predicted from the statistical para-
meters determined for the 25 mm gauge length. The
estimates displaying a limited scatter and providing
a good fit as indicated by the Andersson—Darling test
were selected:

(1) the parameters estimated by maximum likeli-
hood method from the distribution of strains to fail-
ure, assuming the presence of two concurrent popula-
tions of surface- and volume-located flaws (Table VI),

(i) the parameters estimated by linear regression
method from the distribution of o,  data, assuming
the presence of two partially concurrent populations
of extrinsic and intrinsic flaws (Table VIII).

Failure probabilities were computed using Equa-
tions 17 and 24, respectively.

Figs 10 and 11 compare predictions with experi-
mental data. Predictions visually agree fairly well with
experimental data. However a better fit is observed in
Fig. 11, particularly at the low-strength extremes.
Again this result supports the separation of failure
data into two families involving partially concurrent
intrinsic and extrinsic flaws. The results also confirm
that the distributions of o, strength data provided
satisfactory estimates of the statistical parameters for
prediction purposes. They show that linear regression

TABLE VIII Statistical parameters for Nicalon fibres estimated by the linear regression method, assuming the presence of partially
concurrent flaw populations. Standard deviations are given in parentheses

L =25mm L =50 mm L =75mm
my Go1 m, Go2 A* my Co1 m, GCg, A* my Co1 m, Go2 A*
G4, 513 147 229  0.04 038 546 195 034 545 195 1.92 7x1073  0.34
(1.11)* (0.66) (1.16) (4.2x1073) (1) (0.81) (1.2)  (0.93) (0.97) (7.4x107%
Cugyy 24 195 214 0.027 042 491 1449 033 481 1331 1.99 0.013 0.56
(1) (0.93) (1.1) (2.8x1073) (0.95) (0.58) (1) (0.63) (1) 13x1073)
Gy, 48 20 22 0.017 039 522 1278 020 5.69 31.10 2.26 0.026 0.38
(1.17)  (0.69) (1.1) (23x1073) (0.98) (0.8) (1.25) (0.9) (1.07) (1.7x1073)
€01 €02 €01 €01 €02
& 564 11x107*% 312 34x107° 024 55 1x107# 033 616 1x107% 204 8x1078 027
(1.21) (5x107% (1.59) (3.6x1077) (1.03) (4x107°) (1.34) (4.8x107°) (1) 8x1077)

TABLE IX Statistical parameters for Nicalon fibres estimated by maximum likelihood method, assuming the presence of partially
concurrent populations of flaws. Standard deviations are given in parentheses

L =25mm L =50 mm L =75mm
my Go1 my Go2 A* my Go1 m; Ggy A* my Go1 my Go2 A*
C4,, 063 482 385 1.2 031 597 286 028 6.37 40 315 032 0.38
(1.09) (2.16) (1.42) (0.13) 0.87) (1.1) (1) (1.84) (1.16) (0.034)
Ougyy 031 47.6 475 6.54 044 514 1773 030 5.88 35 3.65 098 0.59
(1) (2.19) (L.7)  (0.7) (0.8) (0.73) (1) (1.62) (1.34) (0.1)
cq,, 495 1259 345 038 034 546 1587 024 8 76.15 3.6 0.68 0.4
(0.84) (0.52) (1.27) 3.2x1073) (0.8) 0.61) (1.45) (3.7) (1.33) (0.01)
€01 €02 €01 €01 €02
€ 698 3x107* 447 3x10°° 034 581 12x1074 0.26 7.85 39x107% 321 26x1076 0.21
(1.15) (1.4x107°) (1.65) (3.2x1077) (0.85) (4.7x1079) (1.342) (1.8x107%) (1.18) (2.6x1077)
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Figure 9 Comparison of the experimental strength distributions for
Nicalon fibre at various gauge lengths and the Weibull distributions
computed assuming concurrent flaw populations (Equation 18).
The statistical parameters have been estimated by (a) linear regres-
sion and (b) maximum likelihood methods: (A) 25 mm, (&) 50 mm,
(M) 75 mm.

method is appropriate for statistical parameters es-
timation, provided fracture origins are properly iden-
tified and failure data are separated accordingly.

4.4. Evaluation of the influence of
uncertainty in the statistical parameters
m and ocy:

Uncertainty in failure probability computations was

obtained by performing the differentiation of the fail-

ure probability equation, taking into account the de-

pendence of 6, upon m (Equation 8)

o[ (e e

Inserting the derivative of Equation 8 into Equation
12, failure probability uncertainty reduces to a func-
tion of the uncertainty in m

N
m Z In(c;) o}
AP =Am«ﬁ> In(c) — =L
c coV/N

(26)
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Figure 10 Comparison of the experimental distributions of Nicalon
fibre strains to failure at various gauge lengths and predictions from
the statistical parameters estimated for a 25 mm gauge length using
maximum likelihood method (concurrent populations of surface-
and volume-located flaws): (A) 25 mm, (¢) 50 mm, (H) 75 mm.
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Figure 11 Comparison of the experimental distribution of Nicalon
fibre strengths at various gauge lengths and predictions from the
statistical parameters estimated for a 25 mm gauge length using the
linear regression method (partially concurrent populations of flaws):
(A) 25 mm, (¢) 50 mm, (M) 75 mm.
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Figure 12 Uncertainty in failure probability as a function of the
uncertainty in Weibull modulus given by Equation 26 for various
failure probabilities.

Fig. 12 shows the influence of the uncertainty in m on
the failure predictions. The dependence of failure
probability computations upon m uncertainty in-
creases with decreasing failure probabilities.

The uncertainty observed on the m estimates com-
prised between 5% and 50%. The large uncertainty
was induced by the populations of volume-located or
extrinsic flaws. The corresponding uncertainty in fail-
ure probability varies between 2% and 25% for a 50%
failure probability, and between 12-25% and 123%



for a 10% failure probability. The predictions of fail-
ures at the low-strength extremes are very sensitive to
the Weibull modulus. Therefore, a significant effort in
the estimation of the true statistical parameters is
required.

5. Conclusion

The distributions of failure data including strains-to-
failure or strength for SiC fibres may not be described
solely in terms of the two-parameter Weibull function,
owing to the presence of bimodal populations of frac-
ture-inducing flaws. In the present work, this effect
was attributed to the presence of two partially concur-
rent flaw populations including extrinsic flaws located
in the surface and intrinsic flaws located both in the
surface and in the volume. The extrinsic flaws exhibit
a similar geometry but a higher severity when com-
pared with intrinsic surface-located flaws. The exact
nature of these flaws has not yet been identified. How-
ever, data suggest that the contribution of these flaws
to fibre failure may be related to the presence of
samples with a larger diameter.

This separation of flaws into two partially concur-
rent populations was assessed by comparing the esti-
mates of the statistical parameters obtained when
assuming the presence of three possible flaw popula-
tions. The Andersson—Darling test showed that the
best fit of the distributions to the experimental data is
obtained when assuming the presence of partially con-
current populations of flaws, whatever the method of
estimating the statistical parameters. This result was
confirmed by the predictions of distributions at vari-
ous gauge lengths from the statistical parameters esti-
mated at the shortest gauge. The best results were
obtained when using strains as failure data. Strain is
very convenient because there is no need to measure
fibre diameter. However, using the average fibre dia-
meter for strength evaluation may provide satisfactory
approximation for failure prediction purposes.

Poorer results were obtained when considering
a single population of flaws or two concurrent popula-
tions of surface- and volume-located flaws. In both
cases, the Andersson—Darling test showed that the
failure data cannot be properly described using
Weibull statistics, as a result of the presence of failure
data at the low-strength extreme. An improvement
was observed with the maximum likelihood estimates,
based upon o, and in the presence of concurrent
flaw-populations. In this latter case, the highest value
observed for the Andersson—Darling parameter was
0.51, indicating that a Weibull distribution may be
regarded as sound. This latter result perfectly high-
lights the discrepancy that may exist between
purely statistical approaches and physical foundation
of failure.

The maximum likelihood estimator is generally pre-
ferred due to its small bias error in the presence of low-
strength extremes. However, it was shown that the
linear regression estimator is capable of providing
satisfactory estimates of statistical parameters for pre-

diction purposes, provided the populations of frac-
ture inducing flaws are properly considered. In sum-
mary, the following statistical parameters seem to be
appropriate for the SiC Nicalon fibres: m; = 5.5,
Go1 = 19 MPa (intrinsic failures); m, =2,
o, = 0.02 MPa (extrinsic failures), both with refer-
ence volume V, = 1 m>.
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